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ABSTRACT  
 

The technique of integration (anti-differentiation) represents one of the most important techniques in calculus. 

While its counterpart, differentiation, is a routine and relatively simple procedure, integration, in general, is 

a much more involving task. The inverse relationship between differentiation and anti-differentiation 

(evaluation of indefinite integrals) in some particular cases reveals the possibility to derive the form of the 

antiderivative and evaluate this antiderivative by differentiation and subsequent comparison of coefficients. 

This paper is a sequel to previous author’s papers and deals with some other types of elementary functions 

whose indefinite integrals can be, at least partly, evaluated by differentiation and comparison of coefficients. 

 

KEYWORDS: higher mathematics, differentiation, integration, undetermined coefficients   

 

JEL CLASSIFICATION: I 20, C20 

 

 

INTRODUCTION  

In [2], we investigated integrals containing polynomials and various rational powers of 

a linear function. Namely, we discussed the antiderivatives of the following functions: 
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where      xPxPxP rmn ,,  denote polynomials of n-th, m-th 

and r-th degree, respectively. Let’s recall the results from [2]. We showed that the indefinite 

integrals of these functions can be expressed as follows: 
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For example   

     4 5242 1d11  xCBxAxxxx  

Upon differentiation and comparison of coefficients we obtained the antiderivative without 

“classical” integration. 

    constxxxdxxx 
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In this paper we investigate integrals containing polynomials and various rational powers of 

polynomials.  

 

RESULTS AND DISCUSSION  

Like in [1] and [2], we denote polynomials of degree n, m, r as      xxQxP rmn ,,  etc., 

respectively and their k-th derivatives as      xxQxP krkmkn  ,,  etc., respectively, further a, 

b, c etc. are given (real) constants and A, B, C,  ,   etc. are unknown coefficients. All the 

investigated integrals are considered on intervals where they are defined and in all cases and 

illustrative examples we set the integration constant equal to zero.  

 

Let us consider the simplest case first. 

1. 
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Since the square root of a quadratic polynomial is transformed by differentiation into its 

reciprocal multiplied by a linear term, we will consider the function   cbxaxxQn 2 and 

its derivative. In all discussions in this paper, except for the illustrative examples, we consider 

polynomials in general, hence we deliberately neglect the constant multiples of polynomials 

that arise during differentiation. 
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Now let          baxxQcbxaxxQxP nnn   22

11 , and we can write 
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But the polynomials    xQxP nn ,1 differ in degree and  xQn  contains fewer (unknown) 

coefficients than  xPn 1 , so it is necessary to make up for the missing coefficient. This 

coefficient (in order to be “preserved” by differentiation) assumes the form 
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Example 1: Evaluate dx
x
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Now we take the derivatives of both sides 
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We see that 4,2  A , hence 
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Of course, the right hand side integral should further be evaluated. We do so only in this 

particular case. Since it is tabulated, we get 
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Example 2: Evaluate dx
xx
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       2542132 223 xCBxAxxxBAxxx  

Now we distribute and compare the coefficients 

 CBxAxCxBxAxBAxBxAxBxAxxx 222510482132 2232233

 

75,
3

89
,

3

10
,

3

2
 DCBA  

dx
xx

xxxxdx
xx

xx


















54

1
7554

3

89

3

10

3

2

54

132

2

22

2

3

 

 

Now we generalize this case to the m-th root of the polynomial in the denominator. 
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We derive the form of the antiderivative for the first integral.  
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Let again         baxxQcbxaxxQxP nnn   22

11  
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Analogously for 
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Both these integrals are valid for 0n  and .1,0m  

 

Example 3: Evaluate dx
xx

xx
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and differentiate 
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then a little algebra 
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and finally we distribute and compare the coefficients 

     512415155 22  xBAxxxAxx  

54488555155 222  BAxBxAxAAxAxxx  

Upon evaluation of the coefficients we have  
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Next we generalize to the case of the m-th root of the r-th degree polynomial in the 

denominator. 
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Again we derive the form of the antiderivative for the first integral.  
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Upon completion of the missing coefficients we get 
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And for 
 

 
dx

xS

xP

m
r

n

  we have  

 

 
    

 

 
dx

xS

x
xSxQdx

xS

xP

m
r

rm m

rn
m

r

rn


  211 

 

Note that 2r , 0n  and 1,0m .  

Now let us replace m by –m, then 
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Example 4: Evaluate dx
xx
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We differentiate again 
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from which 
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And finally we consider the most general case, i.e. the general rational power of the r-th 

degree polynomial in the denominator. 
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Note again that 2r , 0n  and 0m . 

As in the previous cases we differentiate the function 
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It is easy to show that 
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Again let us replace m by –m, then 
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Example 5: Evaluate 
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CONCLUSIONS  

In the paper we investigated integrals containing polynomials and various rational powers of 

polynomials. The algebraic limitations of the method developed in the paper do not allow us 

to evaluate the “undone” integrals on the right hand side. These integrals are, in general, non-

elementary and their evaluation requires, except for special cases, more sophisticated methods 

which are out of the scope of this paper.  

However, the method presented in the paper simplifies the (reduces the degree) polynomial in 

the numerator and reveals the structure of the required antiderivative. 

The use of the presented method is left to the reader in every particular case. 
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