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ABSTRACT 
 

The design an optimal numerical method for solving a system of ordinary differential equations simultaneously 

is described in this paper. System of differential equations was represented by a system of linear ordinary 

differential equations of Euler’s parameters called quaternions. The components of angular velocity were 

obtained by the experimental way. The angular velocity of the centre of gravity was determined from sensors of 

acceleration located in the plane of the centre of gravity of the machine. The used numerical method for solving 

was a fourth-order Runge-Kutta method. The stability of solving was based on the orthogonality of a direct 

cosine matrix. The numerical process was controlled on every step in numerical integration. The algorithm was 

designed in the C# programming language. 
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INTRODUCTION  

 

The goal of this contribution is that the published research supplement the missing part of 

many scientific books and scientific articles dealing with spacecraft attitude dynamics of rigid 

body movement in three-dimensional space. Determination of the dislocation of a certain 

moving frame of the system is a very important part of applied dynamics. One of these cases 

refers to the robotic arms movement as defined in [5].  In even a specific case is the problem 

to determine the dislocation of the whole moving body in three-dimensional spaces. This case 

refers to a moving vehicle on the ground with respect to an inertial coordinate system. There 

are many methods how to determine body dislocation, for example, using GPS. But using 

GPS giving only coordinates of moving objects with no acceptable precision. On the other 

hand, the data obtained from sensors of acceleration or gyroscopic gauge, giving the more 
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usable data set. Angular velocities can be utilized by the system of quaternion differential 

equations (SQDE) [10]. Derivation of SQDE was published by [2, 3, 6]. The analytical 

method of solving the system of simultaneous linear differential equations (SLDE) was 

published by [4]. The application of the numerical integration method to solve ordinary 

differential equations was published by [8]. The numerical solution of SLDE was published 

by [9, 11]. Matrix notation of the quaternion vector space was analysed by [1, 7]. The exact 

and clear description of numerical solution SQDE is presented in this contribution with the 

utilization of matrix formalism and C# programming language.  

 

MATERIAL AND METHODS  

 

Measurement system and object 

An object for measurement was a municipal services tool carrier Reform Metrac H6X. The 

machine on duty is depicted in Figure 1. The basic parameters and centre of gravity 

dislocation of the machine were published in [10]. 
 

 

  

Figure 1. Metrac H6X on terrain Figure 2. Dislocations of acceleration sensors on machine 

 

For the measurement of accelerations of the machine were used the ADXL 345 sensors. The 

sensor measured accelerations in the XYZ axes. The sensors were dislocated in the plane of 

the center of gravity of the machine where the z-coordinate dimension was zero with respect 

to the center of gravity. Mounted sensors are depicted in Figure 2. We were provided an 

experimental ride with a machine with a defined trajectory as depicted in Figure 1. For 

application, we used the data from the ride down direction along the downhill with turning 

back to uphill with braking. The relevant accelerations were recorded in real-time [8]. The 

processed angular velocities of the center of gravity of the machine are depicted in Figure 3. 
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Figure 3. Angular velocities of centre of gravity of the machine 

 

Numerical method 

For stability of numerical solving of system of differential equations, we chose the fourth 

order Runge-Kutta numerical method. The systems of simultaneous differential equations are 

in the form (01). 
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Written in the shorter form of system (01) is: 
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 i iy x y i n0 0 1 2 3 , , , ... . (04) 

For solving system (01) was used the fourth-order Runge-Kutta method, with constant step 

size in the next form: 
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where the coefficients are: 
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Where the variable  n is the count of the differential equations in system and k is the count of 

discrete points of technical functions in the interval 1, k . In the solutions we assume that the 

function f , respectively functions 
1
f..... 

n
f , are the continuous in the interval jj ,1 and 

satisfied  with the solution on all points. Variable   t is the step size of the method. 

 

Simultaneous quaternion differential equations  

In most spacecraft applications occur the SQDE in the next form:  

0
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The equations can be rewritten in matrix form: 

 
0,1,2,3, ,
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and without indexation in general form: 

   
1

.
2

dQ
Q

dt

 
   

, (09) 

where: 

 
dQ

dt

 
  

- matrix of quaternion differentials, 

   - matrix of angular velocities, 

  Q - matrix of quaternions. 
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RESULTS AND DISCUSSION  

 

To design an efficient algorithm we have to rewrite the matrix form (07) to separate single 

equations system to the form with the derivatives on the left side and other members placed 

on the right side of the equation. By these steps, we get the system of simultaneous equations 

(10) as follows: 
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(10) 

 

The algorithm has the next structure. 

* * * *

0 1 2 3  1, 0, 0 0 ,Initial condition for quaternion values q q q q     ; 
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where: 

 
2 2 2 2

11 0 1 2 3a q q q q    ,   12 1 2 0 32. . .a q q q q  ,   13 1 3 0 22. . .a q q q q  , 

  21 1 2 0 32. . .a q q q q  , 
2 2 2 2

22 0 2 3 1a q q q q    ,   23 2 3 0 12. . .a q q q q  , 

  31 3 1 0 22. . .a q q q q  ,  32 2 3 0 12. . .a q q q q  ,  
2 2 2 2

33 0 3 1 2a q q q q    ,  

and   
T

mean the matrix transpose on each i  to k . 

 

We define the new variable array deti q i
M     , where i is a determinant of the 

transformation matrix. The transformation matrix q i
M    is strongly orthogonal. The 

precision of numerical integration is defined through the orthogonal matrix determinant value. 

We define the precision variable or error of numerical integration  rE q , where: 

0i   to k  

    1r ii
E q    

;

;

increment i

return
  

 

 pfunction solve f q  

0..3p  ; 

   0 1 2 3

1
. . . .

2
x y zj

q q q q      ;    1 0 3 2

1
. . . .

2
x y zj

q q q q     ; 

   2 3 0 1

1
. . . .

2
x y zj

q q q q     ;    3 2 1 0

1
. . . .

2
x y zj

q q q q     ; 

end function  

 

Through the designed algorithm we were solved the transformation matrix determinant values 

on each step and these values are depicted in the Figure 4. 
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Figure 4. Transformation matrix determinants 

 

 

For showing a viewable look of values of determinant we create a chart in y-axis interval 

1.00000000013300,1.00000000013500 . The chart is depicted in Figure 5. 

 

 

Figure 5. Transformation matrix determinants details 

 

To control numerical integration error, we have solved the transformation matrix error on 

each step of counting cycles. This error is based on the orthogonality of the transformation 

matrix, where the determinant is equal to one. The error is depicted in Figure 6.  
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Figure 6. Numerical integration errors 

 

CONCLUSIONS  

 

In this paper, we are dealing with design an algorithm for numerical solving a simultaneous 

system of differential equations (SSDE). For the model situation, we chose the quaternion 

differential equation, where the angular velocities we got from the real experiment with an 

agricultural machine. The aim of this work was to creating and testing the optimal algorithm 

for solving SSDE. As a programming language, we chose the language Visual C#, where we 

create the function QTSolver and the function SolveFQP as a subroutine of function 

QTSolver. The published algorithm was written here in the shortest form with using the 

indexation of many used variables. The published algorithm has a convention like Visual C# 

language. The goal of this article is showing the easy way to solve any system of linear 

differential equations with Runge-Kutta numerical integration method with constant step size. 

We were chosen the quaternion system of the differential equation as a very suitable example. 

The benefit of these types of equations is the orthogonality as well as the control of the 

stability of numerical solving. In the presented example the result of solving are quaternions 

from which we create the transformation matrix. The determinant of transformation matrix 

(see Fig.4.) in respect of orthogonality is equal to one. From this assumption, we are able to 

solve the error of numerical integration (see Fig. 6). The process of solving is very accurate, 

and the errors values are in the interval 14 144.10 ,6.10  . 
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