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ABSTRACT 
 
The topic of this paper is concentrated on the problem of mechanics of a deformed solid. In the first part we 
solved equilibrium equations of a transversal isotropic plate with initial stresses under mixed conditions on 
planar faces where we applied the method of decomposition of the sought functions into Fourier series by 
Legendre polynomials. Normal displacement and tangent voltage were assumed to be zero. In the second part we 
proposed a method of representing the general analytical solution of the obtained equilibrium equations. 
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INTRODUCTION 
 
Initial stresses are widely used in solving problems of a formed solid [2, 3]. In [4, 5], 
a method for constructing equations of anisotropic shells and plates with initial (residual) 
stresses is outlined. It is based on the method of decomposition of sought functions into 
Fourier series by Legendre polynomials of thickness coordinate [8]. With respect to the 
coefficients of expansions, a system of differential equations and corresponding boundary 
conditions were obtained as a function of two independent variables. On this basis, in [6] 
a solution to the problem of the stress state of a transversal-isotropic plate with initial stresses 
weakened by a circular cylindrical cavity was found.  
 
MATERIAL AND METHODS  
 
The cavity surface and flat faces are free of external forces, and at infinity the plate is subject 
to constant tensile and shear forces. In this work, by the method of decomposition of the 
sought functions into Fourier series by Legendre polynomials, we derive the equation of the 
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elastic equilibrium of a transversal-isotropic plate with initial stresses at the sliding finishing 
of plane faces (with zero of normal displacement and tangential stresses). The method of 
representing the general analytical solution of the obtained system of differential equations is 
presented. 
 
RESULTS AND DISCUSSION  
 
1 Equilibrium equations 
 
Assume that the plate is related to the Cartesian coordinate system xi ( )1,2,3 ,i = and it is 
located on the median plane S  coinciding with the isotropy plane, and ],[3 hhx −∈ . The 
frontal boundary planes hx ±=3  

are slidably fixed, i.e. 
( ) ( ) ( )2,10,,,0,, 213213 ==±=± ασ α hxxhxxu  ,                                                       (1.1) 

and the boundary conditions on the cylindrical surface ],[ hhS −×∂ are arbitrary. 

For the problem, we use the method of decomposition of the components of the vector of 
displacements ( )321 ,, xxxu j  into the Fourier series by Legendre polynomials ( )ζkP  of the 
thickness coordinate. Consider, given the boundary conditions (1.1), the components of the 
displacement vector in the form 
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And we present the components of the stress tensor as follows 
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where ( ) ( )( ) ( )( )xxuxhSxxx k
ij

k
j σς ,],1,1[,, 3

1
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 - coefficients of expansions, called 
moments (the moment number corresponds to the order of the Legendre polynomial), N – is a 
natural number which we shall consider even ( )〈∞== ,...2,12 nnN . With respect to the 

coefficients of expansions ( ) ( )k
j

k
ij u,σ , a system of differential equations and corresponding 

boundary conditions is composed as a function of two independent variables. For a transversal 
isotropic plate, it splits into two independent groups of equations describing, respectively, 
symmetric and obliquely symmetric (relative to the median plane S) deformations of the plate. 
In symmetric deformation, taking into account boundary conditions (1.1), it has the form [6] 
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where −+∂∂=∂ 3333,,/ σσαα x – is the normal stress on the planes hxhx −== 33 , . 

Consider a plate with a homogeneous field of initial stresses ( )0
ijP , and assume that 

( ) constPij =0 for ji =  and ( ) ,00 =ijP if ji ≠ .  
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Based on the equations [1] 

jilmijlmij upuc  ∂+∂=σ                                                                                                 (1.5) 

where ijlmc – the elastic modulus tensor, we obtain, taking into account the expansions (1.2), 
the relations for a transversal-isotropic plate with a homogeneous field of initial stresses, 
hence 
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Here 
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 661211 ,...,, ccc – two-index designations of elastic constants, i.e. 

 121266112212111111 ,...,, cccccc === . From relations (1.6) it follows that 
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Multiplying (1.6) by Legendre polynomials and integrating over the plate thickness, we obtain 
a relation connecting the moments of the stress components and the displacement vector, i.e. 
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Substituting (1.7), (1.8) into equations (1.4), we obtain such a system of equations 
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Assuming )0(
22

)0(
11 pp =  and introducing complex variables 2121 , ixxzixxz −=+= , we write 

equations (1.9) and (1.12) in this way 
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Here −∂∂=∆ zz4  is the Laplace operator, .//2,//2 2121 xixxix zz ∂∂+∂∂=∂∂∂−∂∂=∂  
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2 General analytical solution 
 
We present a method for representing a general analytical solution to the system of equations 
(1.13), (1.14). We write equalities (1.14) in the form 
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and define the values of the functions 
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From here, taking into account expression (2.2), we find 
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We apply the operation z∂  to equation (1.13) and in the resulting equality we consider the 
real part. Taking into account the formula (1.15), we obtain 
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It follows from (2.5) that 
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Equalities (2.6), taking into account the values of (2.4), are transformed to 
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Introducing the notation, ( ) ( ),,...,2,112
366 nkuuc k

k ==−  we represent the system (2.8) in 

standard form in this way 
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where ( )∆pkL  – differential operators of the form 

( ) pkpkpkpk hhL γβα +∆+∆∆=∆ 24                                                                          (2.10) 
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−pkpkpk γβα ,, dimensionless constants whose explicit expressions are easy to write out. 
 
To solve the system of equations (2.9), we use the operator method [7]. Consider the 
characteristic equation 

0det 2 =++ pkpkpk kk γβα                                                                                  (2.11) 

And we will assume that it has simple, non-zero roots ( )nmkm 2,...,2,1= . Then, using the 
same method [6], we find 
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According to (2.12), the moments of deformations (2.4) take the form 
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If we take a harmonic function u  in the form of the real part of some harmonic function ( )zϕ′  
(the prime denotes the derivative with respect to the variable), i.e. 

( ) ( )zzu ϕϕ ′+′=  and take into account formula (1.15), then equalities (2.7) and (2.14) can be 
represented in this way    
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From here we find the moments of the components of the displacement vector 
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where ( ) ( ) −= −
k

k
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k
m ycka ,2 212 arbitrary, sufficiently smooth real functions. They must be 

chosen so that equations (1.13) are satisfied. Therefore, if we introduce in (1.13) the values of 
the moments (2.7), (2.12), (2.14) and (2.17), we obtain the equalities 
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It is easy to verify that the constants ( )k
mO 2  are identically equal to zero for [ ]nk ,1∈∀ . This 

follows from the fulfillment of equalities (2.6), taking into account the linear independence of 
meta-harmonic functions .mV According to (2.18), we have 
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where ( )z0ψ - arbitrary holomorphic function; equation (2.19) after integration over the 
variable is reduced to the equality 
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in which arbitrary analytic functions ( )zfk  are denoted. It follows from the last equality that 
the real part kU  should be a harmonic function, and since it is identically equal to zero, then 
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terms, we can set the constants kc  to zero. Thus, from the equalities 0Yk =  we obtain the 
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Consider the characteristic equation 
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and assume that it has simple and non-zero roots sλ . Then, by the above method, we find 
functions ky , i.e. 
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According to formulas (2.23) and (2.27), the moments of the variable ( )nu 2
+  take the form 
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where ( ) ( ) .æ1æ,zz ••
• +=ψ′=ψ e  

Thus, the values of functions (2.12), (2.14) and (2.29), together with equalities (2.13) and 
(2.28), constitute the general solution of the system of equations (1.13), (1.14). 
 
CONCLUSIONS  
 
We applied method of decomposition of unknown functions into Fourier series, in the 
Legendre exposition of polynomials we took into account equations of equilibrium elasticity 
of the transversely isotropic plate with initial stresses at mixed conditions on the flat borders.  
We supposed the normal transference and touch stresses equal to zero. We proposed method 
of presentation of universal analytic solution of received equations. Found solution allows 
describing the stress state on the surface of a transversally isotropic plate. 
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