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ABSTRACT

Differentiation and integration (anti-differentiation) constitute one of the fundamental techniques used in higher
mathematics. These operations are inverse of each other. While differentiation (to the extent of school
mathematics) is relatively simple and straightforward, integration, in general, is a much more involving task.
There are various classical methods to evaluate elementary integrals, e.g. substitution, integration by parts,
partial fraction decomposition or more advanced techniques like the residue theorem, or Cauchy’s integral
formula. The paper deals with some types of elementary functions whose integrals can be evaluated by
intelligent guess and differentiation.
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INTRODUCTION

Integration, i.e. evaluation of the indefinite integral is one of the basic operations in higher
mathematics. If we have a continuous function f (x) on (a,b), then there exists a function
F (x) having the property that F '(x): f (x) on(a,b). The function F (x) is called an
antiderivative of f(x). In order to find the function F(x), we have to integrate or anti-
differentiate the function f (x) So simply speaking, integration is a reverse operation to
differentiation. Differentiation is a relatively simple and routine operation, since there are
general rules available [1], [2], [4]. On the other hand, its reverse, integration is generally
much more intricate and a tedious task. In the paper we focus on some functions whose
integrals can be guessed and evaluated by subsequent differentiation and comparison. The
idea was discussed by Dawson in [3]. Some functions, when differentiated, do not change
qualitatively. These functions are polynomials, exponentials and trigonometric functions such
as sinax, cosbhx and various combinations of them. Differentiation of these functions gives
back qualitatively the same functions.
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MATERIAL AND METHODS

In some cases we can guess the form of the antiderivative of the function /. The idea behind
is the property:
.[f(x) dx = something = [something] = f(x) (1)

So if “something” differentiated is qualitatively the same as the function being integrated, we
can equate both sides of (1), make a comparison and obtain a solution. The usual method that
works here is the method of undetermined coefficients. We illustrate the idea with a simple

example. Let's consider the integral J. (x2 +x+ l)dx. We know that derivatives of polynomials

are polynomials of degree less by one, hence the antiderivative of x°+x-+1 must be
a polynomial of degree 3, i.e. of the form Ax’ + Bx’ +Cx+D .

j(x2+x+l)dx:Ax3+Bx2+Cx+D = x2+x+1=[Ax3+Bx2+Cx+D],and

1

x> +x+1=34x" +2Bx+C and a simple comparison yields 4=—, B = 5 C=1,and

1
33

I(xz +x+l)a’x:§x3 +%x2 +x+D

RESULTS AND DISCUSSION

Now we try to develop this idea a bit more, primarily to integrals of the abovementioned
functions. Hereinafter, we denote polynomials of degree n, m as P,(x), O, (x)etc., respectively

and their k-th derivatives as P, , (x), 0, ,(x) etc., respectively.
1. .[Pn(x)e” dx.

A judicious guess says that the antiderivative of P,(x)e”*must have the form Q,(x)e*~. If

we differentiate the function Pn(x) e’", we get (since we consider polynomials in general, we
deliberately neglect the negative signs and the factor a):

[P.(0)e ] =2, (x) e +P,(x) e
and further
[P ()] =2 () e + P (x) e

[P”*2 (x) eax], =b,; (x) e"" + P, (x) e’"

By combining these equations we obtain
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E () =[B e ]+ (e ]+ (e [+ 2L (k) e or
P () =[( () + B (6)+ Ps(x) e | + () e

It is obvious that after performing »n steps the polynomial Pn(x)reduces to a constant and we
will have

_[Pn (x) e’ dx= ( y P, (x)j e =0, (x) e’", where Zn:PH (x) =0, (x)

k=0

Example 1: Evaluate '[ (3x2 —2x+ 4)e“ dx .
Solution:

I(3x2 -2x+ 4)e2x dx = (Ax2 + Bx+ C)€2
Now we take the derivatives of both sides

(?ax2 —2x+4)ezx =(24x+B)e** +2 (sz +BX+C)€2

We immediately see that A=%,2A+2B=—2,B+2C=4 = B=—%,C=%,hence
j(3x2 —2x+4)e“ abc—(éx2 —§x+ 13 e’* + const
2 2 4

2. jP smaxdx jP cosaxdx

In like manner as in the previous case (by subsequent differentiation and reduction of the
polynomial P, (x) to a constant) we can derive that

.[P sin ax dx = Q, (x)cos ax + R, , (x)sin ax (2)

j P, (x)cos ax dx=Q, (x)sin ax + R, (x)cos ax ()

Example 2: Evaluate '[ (4x3 —x+ l)sin 4x dx .

Solution:

I(4x3 —Xx+ l)sin 4x dx = (Ax3 +Bx* +Cx +D)cos 4x + (Ex2 + Fx+ G)sin 4x
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(4x® —x+1)sin 4x = (34x% +2Bx+C)cos 4x+4 (- Ax’ — Bx* = Cx—D)sin 4x +
4 (Ex2 + Fx+ G)cos 4x + (2Ex+F) sin 4x

And we have
A=-1,B=0,-3+4E=0,-4C+2E=-1,2B+4F =0,-4D+F=1,C+4G =0

I(4x3—x+l)sin4xdx= —x3+§x—l cos 4x + éxz—i sin 4x + const
8 4 4 32

Adding up (2) and (3) yields
_[Pn (x)sin ax +Q, (x)cos ax dx = R, (x)cos ax +S,_,(x)sin ax, if n>m
J.Pn (x)sin ax +Q, (x)cos ax dx = R, (x) cos ax + S, (x)sin ax, if n=m

an (x)sin ax +Q, (x)cos ax dx =R, ,(x)cos ax + S, (x)sin ax, if n<m

Example 3: Evaluate J.((xz +3x— 2)sin 6x + (x3 +x°+ 4)cos 6x)dx.
Solution:
[(® +3x—2)sin 6x +(x* + x> +4)cos 6x)dv = (Ax* + Bx + C)cos 6x +
(Dx3 +Ex® + Fx+ G)sin 6x
(x> +3x—2)sin 6x +(x* + x> +4)cos 6x = (24x + B) cos 6x+6 (- Ax* — Bx—C)sin 6x+
6 (Dx + Ex® + Fx+G)cos 6x +(3Dx> + 2Ex + F )sin 6x

1

D=, E=,24+6F =0, B+6G=4,-64+3D=1,-65+2£=3,-6C+ F =2

!
o’
J.((x2 +3x—2)sin 6x 4—(x3 +x? +4)cos 6x)dx =

= —x"——x+——|cos6x+| —x" +—x"+—x+— |sin 6x + const
12 9 216 6 6 36 27

3. je” sin bx dx,fe” cos bx dx.

[e** sin bx] = a e sin bx +b ** cos bx (4)

[e“ cos bx], =—be""sinbx+ae"" cos bx /-% (5)
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Adding up (4) and (5)

2
[e” sin bx] + % [e‘” cos bx]’ = (% + bj e”* cos bx and relabeling the constants gives

je” coshbxdx=Ae"" sinbx+ B e cos bx

Analogously, solving for J. e“" sin bx dx yields the same general form of solution

Ie” sin bx dx = A e"”* sin bx + B e** cos bx

Example 4: Evaluate I e** sin 5x dx.
Solution:

J.e“ sin 5x dx = A e** sin 5x+ B ¢** cos 5x

e*“sin5x=44e* sinSx+54e* cos5x+4B e cos 5x—5B e**sin 5x

44-5B=1,54+4B=0

je” sin 5x dx _4 e** sin 5)c—i e** cos 5x + const
41 41

4. J.Pn (x)e* sin bx dx, J.Pn (x)e* cos bx dx.

This case is the combination of all the previous cases. Pursuing the same idea shows that the
general form of a solution in this case is

J.Pn(x) e sin bx dx = 0, (x)e"* sin bx+ R, (x) e** cos bx

J.Pm (x)e** cos bx dx = Q, (x)e""sin bx+ R, (x)e** cos bx

Example 5: Evaluate I(x +4)e** cos 3x dx.

Solution:

J.(x+4)e“ cos 3x dx = (A x+B)e** cos 3x+(C x+D)e" sin 3x

(x+4)e** cos3x=Ae** cos3x+2(dx+ B)e’* cos 3x—3(Ax+ B )e** sin 3x +

C e** sin 3x+ 2(Cx+ D) e** sin 3x+3(Cx+ D) e** cos 3x
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After canceling e**we have
A+2B+3D=424+3C=1-34+2C=0,-3B+C+2D =0,
and solving this system yields

j(x+4)ez’C cos 3x dx:(ix+@] e’* cos 3x+(ix+ﬂ] e’* sin 3x + const
13 169 13 169

CONCLUSIONS

Note that all the above mentioned integrals can be evaluated by means of the “by parts”
integration method, which is also a formal justification of the results, but employing this
method to solve Example 3 or Example 5 is a pretty formidable task, to say the least. There
are other types of functions whose antiderivatives can be found without the “necessity” of
integration. We will investigate such functions in the upcoming paper. The use of the
presented method is left to the reader in every particular case.
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