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ABSTRACT 
 
In this contribution we are dealing with application of differentiating of function defined with determined 
parametrical integral. The mathematical problem was analyzed form point of view of mechanics of materials. 
The mathematical model of loaded beam was created. Applying the cross section method we defined the exact 
function of bending moment. Additional properties of cantilever joint were neglected. We showed the derivation 
of modified Castigliano’s theorem via Leibnitz rule of differentiating under integration sign. Appling the 
modified Castigliano’s theorem we got the exact solution of the deflection of the beam. The exact solution of 
beam deflection was finished in PTC Mathcad Prime software (PTC - Parametric Technology). The numerical 
integration of the bending moment dataset and defined deflection function was done in program written in 
Microsoft Visual C# 2010. The Dormand-Prince numerical integration method was used for the numerical 
integration. Comparing the exact and numerical solution we got the error of numerical integration solution. 
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INTRODUCTION  
 
The application of modified Castigliano’s theorem is the basic knowledge for the structural 
and civil engineering. It’s have been published a many articles which deals with the 
application this method. But, unfortunately the some major parts are still missing in the 
published articles. The goals of this paper are focused on the summarization of the way how 
it was created and how does it work the modified Castigliano’s theorem in the application in 
mechanical engineering. The application of generalized form of Castigliano’s theorem was 
published by [11]. Of course, the method were replaced by the finite element method (FEM) 
applied in the continuum mechanic of elastic bodies. But many technical applications are the 
technical functions which are defined by the integral. These functions must be differentiated 
manually or numerically. The mathematic procedure including the differentiating the 
function defined by integral was analyzed by [12]. The method of differentiating the 
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functions under integral sign was analyzed by [1, 5, 8, 14]. Many mathematical examples of 
differentiating under integral sign were published by [13] Explaining the visualization of 
Leibnitz rule was done by [6]. The deflection of machines parts applying the Castigliano’s 
theorem was realized by [7, 17]. 
 
MATERIAL AND METHODS  

The least energy method  

The energetic method of determination of beam deflection y    is defined in [3].  The main 
idea of the method is the determination of the difference dA   of the strain energy function A   
of more variables where 1 1( ,.., ,.., ; ,..., ,.., )i n i nA f F F F M M M=  by using the total derivate in 
the differentiating form as follows:  

1 1
1 1

... ... ... ... ...i n i n
i n i n

A A A A A AdA dF dF dF dM dM dM
F F F M M M
∂ ∂ ∂ ∂ ∂ ∂

= + + + + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 (1) 

where 1 n≤ ≤ +∞ .  The energy in deformable body is separated to two parts as described in 
[3]. The significant and not neglected part of strain energy has the form .i i idA dF y= . 

Selection of i th−  member from equation (1) and compare them we got .i i i
i

AdF y dF
F
∂

=
∂

 

and finally we got the equation for solving the deflection i
i

Ay
F
∂

=
∂

 . The general form of this 

equation is follows: 
Ay
F
∂

=
∂

. (2) 

 
Differentiating under integral sign 

Let is defined the function of two variables by definite integral with boundaries a( x ),b( x )  of 
the continuous function where as defined in [9]:  

( )
( )

( )
, ( , )

b x

a x
I x t f x t= ∫ . (3) 

Differentiating function ( , )I x t  with using the limits we got: 
( )

0

, ( , ) ( , )lim
t

I x t I x t t I x t
t t∆ →

∂ + ∆ −
=

∂ ∆
.  

After the some equations arrangements published in [2] we got the final form: 
( ) ( )

( )

, ( , )[ ( ), ]. ( ) [ ( ), ]. ( )
b x

a x

I x t d d f x tf b x t b x f a x t a x dx
t dt dt t

∂ ∂
= − +

∂ ∂∫ . (4) 

 
Mathematical model  
We were self-created the model of isotropic beam loaded with continuous triangular loading

2q . The self-mass of beam is modelled with uniform loading 1q . The beam section profile is 
square and its dimensions are in table 1.The model is depicted on the Figure 1. The model 
properties are in Table 1. 
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     Figure 1 Model of loaded beam 

 

 
 

 

Table1 Beam properties 
   

Parameter Value Unit 

Beam length L  1 m  

Beam profile × ×a a t  0,05x0,05x0,003 m  

Beam mass Bm  4,16 kg  

Uniform loading 1q  40,81 1−N .m  

Uniform loading 2q  4081 1−N .m  

Moment of inertia zJ  2,08492.10-7 4m  

Modulus of elasticity E  2,1.1011 Pa  

For any position x  of the cross-section the bending moment has the form in equation (5): 
2 3

1 2

2 6
 

= − + 
 

x
q .x q .xM

.L
  (5) 

The bending moment of the loaded beam is depicted in the Figure 2. The cantilever joint 
position of the beam is located in the 1L m=  dimension of the beam length (opposite 
coordinate system). 

 
        Figure 2 Bending moment function visualization 

The exact solution of beam deflection on the end of beam (point A) has the form in equation 
(6). 

4 4
1 2

8 30
 

= − + 
 

A
z z

q .L q .Ly
.E.J .E.J

  (6) 

For modelling the deflection of the beam we rewrite the equation (6) to the form in equation 
(7). 

( ) ( )
41 2

8 30i i
z z

q qy .x
.E.J .E.J

 
= − + 

 
  (7) 
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Numerical solution of deflection 
 
Dormand – Prince method is addressed by its authors [4]. They presented this method in the 
form of Butcher table, where are described coefficients of particular terms in the equations. 
The equations for Dormand – Prince method are as follows: 

( )1 i i ik h f x , y=  , 2 1
1 1
5 5i i i ik h f x h , y k = + + 

 
, 

3 1 2
3 3 9

10 40 40i i i ik h f x h , y k k = + + + 
 

, 

4 1 2 3
4 44 56 32
5 45 15 9i i i ik h f x h , y k k k = + + − + 

 
,

5 1 2 3 4
8 19372 25360 64448 212
9 6561 2187 6561 729i i i ik h f x h , y k k k k = + + − + − 

 
 

6 1 2 3 4 5
9017 355 46732 49 5103
3168 33 5247 176 18656i i i ik h f x h , y k k k k k = + + − − + − 

 
 

7 1 3 4 5 6
35 500 125 2187 11

384 1113 192 6784 84i i i ik h f x h , y k k k k k = + + + + − + 
 

 

1 1 3 4 5
35 500 125 2187 11 6

284 1113 192 9784 84i iy y k k k k k+ = + + + − + . 

(8) 

  
The numerical integration algorithm was created in the Microsoft Visual C# 2010 language. 
The algorithms of solving the differential equations with families of Runga-Kutta methods of 
higher degrees were published by [15]. 
 
RESULTS AND DISCUSSION  
 
We define the strain energy in deformable body under the bending loading and it has the next  

form: 2

0

1
2 .

L

xA M dx
E J

= ∫ . (9) 

Placing the equation (9) to equation (2) we got the form: 2

0

1
2 .

L

xy M dx
F E J
 ∂

=  ∂  
∫ . Applying 

the equation (4) and setting the boundaries for integral ( ) 0a x = , ( )b x L=  we got: 

( ) 2

0

, 1 ( , )[ , ]. ( ) [0, ]. (0)
2 .

L
x x

z

I M F d d f M Ff L F L f F dx
F E J dt dt F

 ∂ ∂
= − + ∂ ∂ 

∫ . (10) 

The next parts of equation (10) are zero: [ , ]. ( ) 0df L F L
dt

= , [0, ]. (0) 0df F
dt

= .  

On the next step we got for deflection:   
2

0

1
2 .

L
xMy dx

E J F
∂

=
∂∫ . (11) 
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The square of bending moment we should rewrite as follows: 
0

1 ( . )
2 .

L
x xM My dx

E J F
∂

=
∂∫ . 

Applying the rule for differentiating the two variables product in general form

( ).u v u v uv′ ′ ′= + , we got: ( . ) 2x x x x x
x x x

M M M M MM M M
F F F F

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂
.   

Returning to back the equation (11) we have the final form of modified Castigliano’s 
theorem: 

0

1
.

L
x

x
My M dx

E J F
∂

=
∂∫ . (12) 

If we want to define the function of bending moment for application the equation (12), we 
have to insert to the certain point (where we are looking for the value of deflection) the force
F   equal to zero. The function of bending moment for our model will be the next: 

2 3
1 2

2 6x
q .x q .xM F.x

.L
 

= − + + 
 

 (13) 

Combining the equation (12) and (13) we got: 
2 3 2 3

1 2 1 2

0

1 . . . .. . .
. 2 6. 2 6.

L q x q x q x q xy F x F x dx
E J F L L

       ∂ = − + + − + +       ∂         
∫ .  

Result of the partial differential (in {} brackets) is the next: ( )x− , and in the integral part (in 
the [] brackets) of the equation holds 0F =  and finally we got:  

2 3
1 2

0

1 . .
. 2 6.

L q x q xy x dx
E J L

 
= + 

 
∫ . (14) 

Solving the integral (14) we got the equation (6). Rewriting the equation (6) for displaying the 
deflection we got the equation (7).  Generating the deflection curve with step 0 01x . m∆ =  we 
got the curve depicted in the Figure 3. 

 
Figure 3 Deflection curve of the loaded beam form exact solution 

 
With the exact solution of the deflection of the beam on the end of beam ( 1L m= ) we got the 
value 33 2234783322355 10exy , . m−= − . The exact solution was realized in PTC Mathcad 
Prime software. For numerical solution we rewrite the equation (14) to the next form: 
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( ) ( ) ( )
0

1 .
.

L

i i x iy x M dx
E J

= ∫ . (15) 

Applying the Dormand-Prince numerical method in equations (8) to solve integral equation 
(15), we got the data set of beam deflection curve depicted in the Figure 4. The numerical 
integration step was 0 01ih ,= . The efficiency of the used numerical methods were declared by 
[10,16]. 

 
Figure 4 Deflection curve obtained by numerical integration 

 
Finally we should compare the result of deflection obtained from exact solution with results 
obtained via numerical integrations. The difference (error) was solved from the equation (16). 

( ) ( ) ( )r i ex i num iE y y= −  , (16) 

where: ( )ex iy  is the deflection dataset solved via exact solution, ( )num iy is the deflection dataset 

solved via numerical integration, where 0i ,n . The error function is depicted in the Figure 5. 
The similar numerical problem was investigated and evaluated by [7].   
 

  
Figure 5 Error of numerical integration 

 
The acceptable errors of numerical integration were discussed in [4]. 
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CONCLUSIONS  
 
In this paper we are dealing with the method of exact and numerical solving of the loaded 
beam deflection. For the exact solution was chosen the modified Castigliano’s theorem. We 
showed the derivation of the modified Castigliano’s theorem through the Leibnitz rule of 
differentiating under integral sign on defined example. We set up the mathematical model. 
For the exact solution we solved and visualized the function of bending moment and the beam 
deflection. For this purpose we used the PTC Mathcad Prime software. For the defined 
function of deflection we set up the algorithm of numerical integration in Microsoft Visual C# 
language. Used numerical method was Dormand-Prince method. The numerical integration 
step was chosen 0 01ih ,= . From exact solution we got the beam deflection on the length

1L m= , 33 2234783322355 10exy , . m−= −  and from the numerical integration
33 15589088264663 10numy . . m−= − . The error in the point 1L m=  is 

56 75874495887 10rE , . m−= .  

From the realized analysis we should conclude that the presented method of differentiating 
under integral sign has a significant role in problems taught in mechanics of materials. Very 
pure explanation of the Leibnitz rule in the literature is now fixed. The presented methods are 
utilizable in simple engineering design process or in teaching process in mechanics of 
materials subject or applied mathematics. The applied numerical integration method has an 
acceptable accuracy 36 75874495887 10r%E , . %−= . The percentage error was solved follows: 

( ) 100r% ex numE y y /= − .  
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