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ABSTRACT 
 
Kernel density estimation (KDE) approximates the distribution of statistical data similar to the histogram. The 
histogram of data is a special kind of the Kernel density. In the reconstructed building of stall in Oponice 
(Slovakia), we measured the values of daylight factor. The obtained data proved a bimodal distribution, so it was 
not appropriate to use some of the usual parametric distributions. This paper describes how Kernel density can 
be applied to measured results. We find out the values of the cumulative distribution function of such density, by 
probability procedures, that serves us comparison with the prescribed values of the daylight factor in the 
standard, on the one hand for animals (1.0%) and on the other hand for the people (1.5%) who care for animals. 
The results obtained from the measurements and the same ones approximated by KDE are in good agreement. 
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INTRODUCTION 
 
Nonparametric probability density estimation is an important tool in statistical data analysis 
[2]. It allows capture multimodality, skewness or other irregular structure of obtained 
measurements. Compared to the classical parametric estimation of distributions, it has greater 
flexibility and efficiency.  With the parametric approach [6], it is necessary to predict some 
distribution model, whose small number of parameters is estimated by the likelihood 
principle. A nonparametric approach does not require an a priori assumption of probability 
density distribution [4]. The probability density distribution is created directly from the 
examined data. The most popular nonparametric approach to estimate probability density is 
Kernel density estimation (KDE). The data, that are possible to model by KDE, can come 
from very complicated distributions that mathematically do not even have to be described 
exactly. In this paper, we fit KDE to the distribution of the daylight factor for cattle. 
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MATERIAL AND METHODS 
 
Kernel density estimation 
 
The histogram is the simplest nonparametric estimate of the probability density and 
concurrently it belongs to the most used. To create a histogram, we need two parameters: the 
starting position of the first bin and the bin width. However, the histogram has several 
drawbacks. Density estimate depends on the starting point of histogram. The discontinuities 
of the estimate are not created by underlying density, but only by the bin width of the 
histogram. The histogram is only suitable for one- or two-dimensional problems, because with 
a larger number of dimensions it becomes unclear.  
A more convenient tool for nonparametric modelling of the distribution density is Kernel 
density estimation. Its advantage over the histogram lies in that it is smooth and continuous 
[8]. KDE assembles the measurement of values and creates so called kernels of the bandwidth 
in these values, which in the sum form the Kernel density estimation. If we have a set of data 
xi, i = 1, ..., n, the KDE is expressed according to [12] by the relation  

 
n

i

i 1

x x1KDE (x) K
n.bw bw=

− =  
 

∑ ,                                                  (1) 

where ix xK
bw
− 

 
 

represents the kernel and symbol bw means bandwidth. Figure 1 illustrates 

a method of producing KDE from individual kernels; on the x axis there are selected these 
points {14, 16, 20, 30, 33, 35}. 
 

 
Figure 1 Example of the sum of individual kernels to the resulting KDE, probability density 
functions   
  
The most used four types of kernels are (in parametric form) 
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Box:                     K (t) 0.5=                                                        (3) 

Triangular:           K (t) 1 t= −                                                     (4) 

Epanechnikov:     ( )23K (t) 1 t
4

= −                                               (5)  

 
As Breheny stated in [3], each kernel must satisfy three conditions:  

 2symmetric to 0; K(u)du 1; u K(u)du 0= >∫ ∫                                   (6) 

In the Figure 2 the various types of kernels (2) - (5) are drawn and the property (6) can be 
demonstrated.  
 
 

 
 

Figure 2 Types of kernels (2) - (5), probability density functions  
 
It turns out that selection of the kernel is not as substantial as choice of the bandwidth bw. By 
choosing an incorrect value of bw, we can oversmooth the distribution by overvaluing it and 
undersmooth by undervaluing. The bandwidth can be optimized, for example, for the normal 
kernel [8].  
Another important parameter for representation of KDE is the number of evenly spaced points 
on the x axis, in which the values of KDE are computed. Obviously, with an increasing 
number of points, the performance of the density will be more accurate. 

 
Realization of the experiment 
 
Daylighting was measured in the stall for cattle in Oponice (Slovakia). The stall has 
undergone extensive reconstruction to improve the conditions for animals. Satisfactory 
lighting is the part of a successful breeding. A detailed description of the building can be 
found in [1] and [5]. The Figure 3 shows ground plan and cross-section of the studied 
building also with the position of the measured points.  
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We measured the internal illumination E and at the same time the external comparison of light 
Eh in the depicted points. As it is determined in [11], the basic condition for performance of 
the measurements is the evenly cloudy sky with a brightness distribution for dark landscape. 
The measurements were made in the precision class 3, because the cattle conditions are 
degraded in comparison with residential homes [9]. We measured with two identical 
luxmeters Testo 545 [7]. We calculated the daylight factor by the formula 

   
h

ED .100
E

= ,                                                            (7) 

where D is daylight factor [%], E is internal illuminance [lx], Eh is external comparison 
illuminance [lx]. 
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Figure 3 Ground plans and the cross-section of the measured building 
 
The standard values of the daylight factor are listed in [10]. For a stall with dairy cows in free 
housing, the minimum D value should be 1.0 %. The value of D = 1.5% is needed for cattle 
workers. 
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RESULTS AND DISCUSSION 
 
The resulting data in the measurement points transformed by the relation (7) are presented in 
the Table 1. At each point in the Figure 3 illuminance was measured five times, giving a total 
number of 215 measurements. As can be seen from the histograms of these data (Figures 4–6) 
the values have a bimodal probability density distribution. Such distribution shows the 
heterogeneity of data, probability feature is composed of two phenomena and it is worth 
considering to divide the data into two more homogeneous sets [13]. To fit on these values the 
classical parametric distribution is practically impossible. Kernel density estimation, however, 
without difficulty creates a probability density distribution over such data.  
 
Table 1 Values of the daylight factor organized in ascending order, 215 values, obtained from 
measurements at 43 points in Figure 3 

0.2195 0.6925 1.9011 2.3853 2.8451 3.8000 6.3425 6.8849 7.0987 
0.2493 0.6938 1.9162 2.4482 2.8966 3.8211 6.3441 6.8872 7.0991 
0.2524 0.6968 1.9336 2.4553 2.9219 3.8349 6.3457 6.8902 7.1041 
0.2527 0.7005 1.9645 2.4593 2.9433 3.8356 6.4251 6.9383 7.1443 
0.2534 0.7036 2.0274 2.4814 2.9801 3.8410 6.4270 6.9814 7.1684 
0.2609 0.7167 2.0410 2.4861 2.9814 4.2793 6.4671 6.9870 7.1768 
0.2624 0.7767 2.0644 2.5052 2.9952 4.4198 6.4889 6.9946 7.1811 
0.2667 0.8051 2.1371 2.5095 3.0132 4.4201 6.4989 6.9977 7.1885 
0.2696 0.8124 2.1492 2.5223 3.0212 4.4337 6.4996 7.0027 7.2394 
0.2779 0.8266 2.1753 2.5279 3.0267 4.4873 6.5003 7.0059 7.2926 
0.4505 0.8368 2.1765 2.5434 3.0332 5.9975 6.5095 7.0177 7.3122 
0.4613 1.1022 2.2032 2.5502 3.0752 6.1256 6.5562 7.0191 7.3755 
0.4679 1.1198 2.2202 2.5510 3.1553 6.1597 6.6477 7.0287 7.3833 
0.4810 1.1486 2.2453 2.5770 3.2882 6.1828 6.7038 7.0414 7.4780 
0.4941 1.3133 2.2494 2.5777 3.3212 6.1876 6.7145 7.0531 7.4851 
0.6006 1.3657 2.2527 2.5878 3.3369 6.2071 6.7248 7.0543 7.5118 
0.6197 1.6054 2.2544 2.6134 3.3614 6.2113 6.7422 7.0566 7.6676 
0.6312 1.6172 2.2661 2.6240 3.3724 6.2427 6.7524 7.0585 7.7039 
0.6323 1.6989 2.2688 2.6246 3.3827 6.2604 6.7616 7.0585 8.1081 
0.6346 1.7200 2.2828 2.6415 3.6708 6.2733 6.7879 7.0689 8.1120 
0.6718 1.7480 2.3068 2.6581 3.7432 6.2939 6.8052 7.0853 8.1128 
0.6752 1.7847 2.3118 2.7064 3.7685 6.2959 6.8380 7.0856 8.2334 
0.6792 1.8516 2.3205 2.7462 3.7798 6.3017 6.8768 7.0863 8.2486 
0.6808 1.8562 2.3423 2.8032 3.7955 6.3370 6.8775 7.0873  

 
On the Figure 4 KDE is created using data with the optimized bandwidth bw = 1.2853 [8]. 
Obviously, by reducing the bw to 0.5, the distribution gets closer to the columns of the 
histogram and the number of its peaks increases, the distribution is undersmoothed. On the 
contrary, by increasing the value of bw to 2, the distribution is more aligned, the number of 
peaks decreases, the distribution is oversmoothed [12].  
The Figure 5 presents the effect of choosing a different kernel on the form of the probability 
density. It turns out that the box kernel is quite jump, and also the triangular and 
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Epanechnikov kernels are not quite ideal. The smoothest shape has the normal kernel. But it is 
confirmed that the shape of KDE is not too sensitive to the kernel type, because the functions 
are not different.  
The Figure 6 illustrates the effect of the number of evenly distributed points in which kernels 
are counted. Obviously, the highest value of 100 points gives smoother shape than the lower 
values 10 and 20 points. With a further increase in points, over 100, there is no more 
smoother function, so we do not show the higher number of points in the figure. 
For KDE, normal kernel and optimized bandwidth bw = 1.2853 (Figures 4 - 6 depicted in 
blue) we calculated the cumulative distribution function values for daylight factor 1.0 % and  
1.5 % as mentioned above [10]. In the Table 2, we compare them with the cumulative 
frequency calculated directly from the data. The value 1.0 %, acceptable for the animals, is 
approximated by KDE almost exactly and the value 1.5 %, ideal for the people, who care of 
animals, differs slightly. 
 
Table 2 Comparison of the cumulative distribution function calculation from data and from 
Kernel density estimation  

  1.0 % 1.5 % 
Fractile from data 16.51 % 18.84 % 
Fractile from KDE 16.28 % 22.30 % 

 
 

 
Figure 4 Histogram of the daylight factor together with Kernel distribution estimation          
for different bandwidth values 
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Figure 5 Histogram of the daylight factor together with Kernel distribution estimation               
for different types of kernels  
 
 

 
Figure 6 Histogram of the daylight factor together with Kernel distribution estimation         
for different numbers of approximate points  
 
CONCLUSIONS 
 
We applied the Kernel density estimation for the data obtained by measuring the daylight 
factor. The effect of bandwidth, kernel and number of points was examined on the shape of 
the density. It was particularly important to adjust the bandwidth, Figure 4, which the most 
influences the resulting shape of the distribution. By computing fractiles of the density, we 
found that roughly 16 % of the values measured in the examined building did not meet the 
light requirements for the animals and about 20 % of the values did not meet the 
requirements of the staff. The fractiles calculated from the Kernel density estimation are only 
slightly different from the fractiles calculated directly from the measured data and can be 
considered as a suitable approximation. 
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